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ABSTRACT. We discuss the polarization properties and first-order diffraction efficiencies of volume phase
holographic (VPH) transmission gratings, which can be exploited to improve the throughput of modern
spectrographs. The wavelength of peak efficiency can be tuned by adjustment of the incidence angle. We show
that the variation of the Kogelnik efficiency versus Bragg angle depends only on one parameter, given by

, where is semiamplitude of the refractive index modulation,n is the average index,d isP p (Dnd)/(nL) Dntune

the thickness of the active layer, andL is the grating period. The efficiency has a well-defined dependence on
polarization. In particular, it is possible to obtain theoretical 100% diffraction efficiency with one linear polarization
at any angle, or to obtain 100% efficiency with unpolarized light at specific angles. In the latter case, high
efficiency is the result of aligning the peaks of thes- andp-polarization efficiency-versus-thickness curves. The
first of these “s-p–phased gratings” for astronomy is in use with the 6dF spectrograph. Consideration of polarization
is particularly important for high spectral resolution, which requires large incidence angles. We also discuss the
possibility of separating polarization states for improved throughput along the entire optical train of a spectrograph.

1. INTRODUCTION

Astronomical spectrographs have undergone a major revo-
lution during the past few decades (van Breugel & Bland-
Hawthorn 2000; Iye & Moorwood 2000, 2003; Larar & Mlyn-
czak 2002; Atad-Ettedgui & D’Odorico 2003). The revolution
has concentrated on the multiplex advantage in order to allow
large numbers of objects or contiguous spatial elements to be
observed simultaneously. This is possible because large detec-
tors are now available, which can also lead to wide-angle fields
and/or wide spectral coverage.

Even though modern spectrographs can achieve up to 40%
throughput (optics�disperser�detector), instrumental through-
put remains a key issue for spectrograph design. Moreover,
some fraction of the light lost along the optical train is received
as stray light at the detector and usually provides a major source
of systematic error in the detected signal.

Now that detectors are widely available with 90% quantum
efficiency in the visible wavelength region, the remaining gains
must come from more efficient designs of the optics and dis-
persing element or elements, which we discuss. We concentrate
specifically on volume phase holographic (VPH) gratings used
in transmission (Arns 1995). However, we note that similar
consideration could apply to a much wider class of dispersing
elements (e.g., reflection gratings, prisms).

What has not been discussed widely is the advantages of the
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polarization properties of VPH gratings; in particular, achieving
the ideal of 100% throughput at any diffraction angle in one
linear polarization. In addition, a theoretical diffraction effi-
ciency of 100%, in both polarizations, can be achieved at spe-
cific angles with particular instrument configurations. An in-
strument that exploits the advantages of VPH gratings can, in
principle, greatly reduce systematic error in the detected signal.

VPH gratings are already in use or are being brought into
use in a number of spectrographs, including: LDSS�� and
Taurus at the Anglo-Australian Telescope (Glazebrook et al.
1998); OSIRIS at the Gran Telescopio Canarias (Cepa et al.
2000); the Goodman spectrograph at the SOAR Telescope
(Clemens et al. 2000); M2HES at the Magellan II Telescope
(Bernstein et al. 2002); FORS at the Very Large Telescope
(Monnet et al. 2002); FOCAS at the Subaru Telescope (Ebizuka
et al. 2003); and LRS at the Hobby-Eberly Telescope (Hill et
al. 2003). The potential of VPH gratings for astronomical ap-
plications has been investigated and discussed by Barden and
others (Barden et al. 1998, 2000a, 2000b, 2002, 2003; Rob-
ertson et al. 2000; Rallison et al. 2003; Tamura et al. 2004).
Here we elucidate the physics of VPH gratings with emphasis
on their polarization and tuning properties, and we discuss how
these properties might be exploited to improve the performance
of spectrographs. In § 2 wedescribe the physics of VPH trans-
mission gratings, in § 3 wedescribe some applications taking
advantage of the well-defined polarization properties, in § 4
we summarize, and in the Appendix we give equations for
calculating the resolving powers of transmission gratings im-
mersed between prisms.
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2. VPH GRATING PHYSICS

In a VPH transmission grating, light is diffracted as it passes
through a thin layer (3–30mm) of, typically, “dichromated
gelatin” (DCG; Shankoff 1968; Meyerhofer 1977; Rallison
1992) in which the refractive index is modulated approximately
sinusoidally. The modulations are produced by the interference
of two large collimated laser beams, and subsequent processing.
These gratings offer a number of advantages over other grat-
ings, including the following:

1. Diffraction efficiencies can approach 100% near the design
wavelength.

2. The wavelength of peak efficiency can be tuned by ad-
justment of the incidence angle.

3. The line density can be significantly higher (up to 6000
lines mm�1) than the maximum generally available for ruled
gratings, which is about 1200 lines mm�1.

4. Transmission gratings allow shorter pupil relief between
the grating and both the collimator and camera, which can
reduce the required camera aperture, increase the field of view,
and/or improve the point-spread function (PSF).

5. The grating is sandwiched between glass substrates, pro-
viding a robust device that can be easily cleaned and have
antireflection (AR) coatings applied.

6. Large grating sizes are feasible.

Further advantages and disadvantages are described by Barden
et al. (2000a). In this paper we also consider the ability to
optimize the efficiency for a particular polarization state.

2.1. Diffraction by a VPH Grating

Light passing through a VPH grating obeys the usual grating
equation, given by

ml
p L (sina � sinb ), (1)g i ini

wherem is an integer (the spectral order),l is the wavelength
in vacuum, is the refractive index of the medium, is then Li g

grating period (which is the projected separation between the
fringes in the plane of the grating, equivalent to the groove
spacing on a ruled grating), is the angle of incidence, anda i

is the angle of diffraction from the grating normal (the signbi

convention is such that means no diffraction; i.e.,b p �ai i

zeroth order). Note that the grating equation can apply to angles
in the DCG layer ( ), in the glass substrates ( ), ori p 2 i p 1
in the air ( ) as long as the air-glass boundaries are paralleli p 0
to the DCG layer (see the Appendix for the general case).
Figure 1 shows a diagram of a VPH grating with the appropriate
angles and lengths defined.

For the simplest VPH transmission grating, the plane of the
fringes is perpendicular to the plane of the grating (we use the
term “unslanted fringes”). In this case, is the same as theLg

separation between the fringesL. For the general case,

L
L p , (2)g cosf

wheref is the “slant” angle between the grating normal and
the plane of the fringes.

2.2. The Bragg Condition

In a VPH grating, high diffraction efficiency can occur
when the light is effectively “reflected” from the plane of the
fringes; i.e.,

b � f p a � f, (3)2 2

where is the angle of incidence and is the angle ofa b2 2

diffraction from the grating normal in the DCG layer. The
phenomenon is analogous to Bragg “reflection” of X-rays from
the atomic layers within a crystal lattice. In both cases the
thickness of the medium beingkl can result in constructive
interference of scattered radiation in that direction. The essen-
tial role of the nonzero thickness of the DCG layer is respon-
sible for the term “volume” in VPH gratings. This “reflection,”
combined with the grating equation, gives the well known
“Bragg condition,” which can be written as

ml
p 2L sina , (4)2bn2

where is the refractive index of the DCG layer, and isn a2 2b

the angle of incidence with respect to the plane of the fringes;
i.e., . Under this condition, is called thea p a � f a2b 2 2b

“Bragg angle.” Light nearly obeying this condition is still dif-
fracted according to the grating equation (eq. [1]), but usually
with lower efficiency. At wavelengths or angles sufficiently
outside the Bragg condition, light passes through the grating
without being diffracted. The Bragg angle is an important pa-
rameter for diffraction by VPH gratings. It directly affects ef-
ficiency and bandwidth (§§ 2.3–2.5), and indirectly affects re-
solving power (Appendix).

We note that unslanted fringes may be preferred, because
with slanted fringes, the tilt may change or the fringes may
curve during DCG processing (Rallison & Schicker 1992). For
unslanted fringes ( , , ), thef p 0 L p L n sina p n sinag 2 2b i i

Bragg condition can also be written as

ml
p 2L sina . (5)g ini

This defines the Bragg wavelength for a given order of dif-
fraction m, and corresponds to Littrow diffraction because

.b p ai i
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Fig. 1.—Diagram of a VPH grating. The equally spaced lines in the DCG layer represent the peaks of a modulated refractive index ( is the averagen2

value). Typically, is in the range 1.2–1.5, depending on the DCG processing (Rallison & Schicker 1992), , and . For unslanted fringes,n n � 1.5 n p 12 1 0

, , and .f p 0� L p L a p ag 2b 2

2.3. First-Order Diffraction Efficiencies

The Bragg condition is not the only condition for high ef-
ficiency. The diffraction efficiency depends on the semiampli-
tude of the refractive-index modulation ( ) and the gratingDn2

thickness (d) in addition to the incidence and diffracted angles.
Kogelnik (1969) determined first-order diffraction efficiencies
at the Bragg condition, using an approximation that is accurate
(to within 1%) when

2l
r p 1 r , (6)limit2L n Dn2 2

where . Substituting (eq. [4] withr ≈ 10 l p 2n L sinalimit 2 2b

) and rearranging givesm p 1

r Dnlimit 2�sina 1 . (7)2b 4 n2

Thus, for a given refractive-index modulation, Kogelnik’s the-
ory is accurate for Bragg angles above a certain value. For

unpolarized light, the Kogelnik efficiency is given by

1 pDn d 1 pDn d2 22 2h p sin � sin cos (2a ) , (8)2b( ) [ ]2 l cosa 2 l cosa2b 2b

where the first term is fors-polarized light (the electric vector
is perpendicular to the fringes), and the second term is forp-
polarized light (the electric vector is parallel to the fringes).4

Figure 2 shows the variation of efficiency versus grating thick-
ness for two different Bragg angles (with fixed andDn p 0.072

4 Note that in some papers the equation forp-polarization efficiency is
incorrectly quoted. The additional coupling parameter, the cosine of the sum
of the two angles ( in this paper), should be placedwithin the 2cos [2a ] sin2b

brackets. This can make a significant difference. If the coupling parameter is
placed outside the brackets, it implies that the efficiency inp-polarization is
always less than ins-polarization, whereas eq. [8] does not. Instead, the thick-
ness of the grating must be larger to produce the same efficiency inp-polar-
ization. This is demonstrated in Fig. 2 and is confirmed by coupled-wave
analysis. Note also that we only consider first-order diffraction in this paper,
because VPH gratings generally have significantly lower efficiencies in higher
orders.
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Fig. 2.—Variation of diffraction efficiency versus grating thickness for two different Bragg angles. The solid lines represent the efficiency of unpolarized light,
while the dashed and dotted lines represent thes- and p-polarization states, respectively. Note that in the lower plot, thes- and p-states are in phase, with a
thickness of about 10mm. This special case represents an example of ans-p–phased grating design.

mm). The efficiencies were determined using GSOL-l p 0.6
VER,5 which provides a numerical calculation using rigorous
coupled-wave analysis (RCWA; Magnusson & Gaylord 1978;
Moharam & Gaylord 1981, 1983; Gaylord & Moharam 1985).
In these cases, the numerical results are in excellent agreement
with Kogelnik’s theory (eq. [8]), because equation (6) is satis-
fied. Note that no surface losses were included. In the upper

5 The GSOLVER ver. 4.0 diffraction grating analysis tool is developed by
Grating Solver Development Company (P.O. Box 353, Allen, TX 75013),
available at http://www.gsolver.com.

plot, the first peaks of thes- and p-polarizations are close
together, and a diffraction efficiency of about 90% in unpo-
larized light can be achieved (with a thickness of 5mm). In
the lower plot, the 35�.3 Bragg angle is a special case in which
the second peak ofs-polarization matches the first peak of the
p-polarization, and near 100% efficiency can be achieved (with
a thickness of about 10mm). This special “s-p–phased grating,”
also called a “Dickson grating,” was noted by Dickson et al.
(1994).

If we consider only thes-polarization curve in the upper
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plot of Figure 2 (dashed line), notice that theoretical 100%
efficiency occurs with a thickness of 4mm. If the thickness is
doubled to 8mm, the efficiency falls to zero. This is not sur-
prising, since if it took 4mm of refractive-index-modulated
medium to coherently diffract the light, then twice as much
medium causes destructive interference in the first-order dif-
fraction direction (and the light will instead pass through with-
out diffraction). At 12mm, thes-polarized light is returned to
100% diffraction efficiency. Generally,p-polarized light is
characterized by a reduced coupling with the medium, which
means that larger thicknesses are required to coherently diffract
the light, depending on the Bragg angle (the factorcos [2a ]2b

in eq. [8]).
The differences in efficiency between the two polarization

states can be used to produce polarization-selective devices
(Kostuk et al. 1990; Dickson et al. 1994; Huang 1994). In
addition, the polarization properties can be used to determine
the average refractive index of the DCG after processing (Ral-
lison & Schicker 1992; Dickson et al. 1994). With this tech-
nique, measurements of the average index of highly processed
DCG ( ) give low values of .6 UnprocessedDn 1 0.1 n ≈ 1.252 2

DCG has an index of 1.54. The average index is important,
since it determines the air angles (a0) for the special angle
gratings; for example, the 35� Bragg angles-p–phased grating
utilizes incidence angles of 46�–48� in air (Rallison et al. 2003).

2.4. Tuning a VPH Grating

A VPH grating can be tuned by changing the incidence angle,
which changes the Bragg condition, to optimize the diffraction
efficiency for a desired wavelength. For example, consider a
VPH grating with 1315 lines mm�1 ( mm, )L p 0.76 n p 1.52

at . The first-order Bragg condition givesa p 16� l p2b

mm, whereas at , the Bragg condition gives0.63 a p 20�2b

mm. The Bragg wavelength is generally close to, butl p 0.78
not necessarily the same as, the blaze wavelength, which refers
to the wavelength of peak efficiency for a given incidence
angle. Note that the blaze wavelength does not depend strongly
on the shape of the index modulations, which are presumed to
be sinusoidal in the models. To detect the blaze wavelength,
it may be necessary to change the grating-to-camera angle, as
well as the collimator-to-grating angle (see Bernstein et al. 2002
for an alternative approach using a pair of mirrors). A VPH

6 Low values of the average refractive index imply that voids are formedn2

in the DCG layer during processing (Curran & Shankoff 1970; Meyerhofer
1977). The exact mechanism is uncertain, and the lowest achievable index
depends on the processing technique. In addition, the index derived using the
polarization properties, and assuming Kogelnik’s theory, may be lower than
the “true index” if birefringence is induced in the material (Tholl 1995). How-
ever, for VPH design purposes, it is in any case more appropriate to use the
“Kogelnik index,” which can be regarded as the effective index, determined
by Rallison and others, that is needed to satisfy the polarization properties of
Kogelnik’s theory. Note also thatd and in the equations of this paperDn2

should be regarded as representing the effective thickness and effective index
modulation.

grating works best at one incidence angle and one wavelength
(the maximal peak), and even though the blaze wavelength can
be changed by varying the tilt, the peak efficiency is lower
away from the maximal peak. The maximal peak is determined
by the grating thickness and the refractive-index modulation,
as well as the grating period and spectral order (§ 2.3).

To illuminate how the Bragg-condition diffraction effi-
ciency varies, we can rearrange the equation for the Kogelnik
efficiency in the following way. Substituting forl (from
eq. [4]) in equation (8) (and using a trigonometric identity,

), we derive2 sina cosa p sin 2a

1 pP 1 pPtune tune2 2h p sin � sin cos (2a ) , (9)2b[ ] [ ]2 sin (2a ) 2 sin (2a )2b 2b

where

Dn d2P p . (10)tune n L2

Thus, this “tuning parameter,” which depends only on the prop-
erties of the DCG layer, determines how the efficiency of a VPH
grating varies with Bragg angle. In other words, all gratings with
the same value of have the same tunability and the samePtune

peak efficiency (subject to eq. [6]), while sets the relation-n L2

ship betweenl and (§ 2.2), and andd can be adjusted,a Dn2b 2

within a certain range, to set the bandwidth (§ 2.5).
Figure 3 shows the variation of diffraction efficiency versus

Bragg angle, with unpolarized light, for: (1) fixed gratings, with
various values of , determined using Kogelnik’s theoryPtune

(represented by the lines); and (2) maximum designable effi-
ciencies, with fixed wavelength and DCG modulation, deter-
mined using RCWA (represented by the symbols). The asterisks
represent standard grating designs, while the squares and tri-
angles represents-p–phased grating designs. These efficiencies
were determined, using RCWA, by varyingd with fixed .7Dn2

At angles below∼15�, the efficiencies determined using
RCWA fall below that of the maximum efficiencies of curves
with values of 0.1–0.2. This is because Kogelnik’s ap-Ptune

proximation is no longer accurate below about 20�, with
(eq. [7]). Low-angle efficiency can be increasedDn /n ≈ 0.052 2

by lowering (and raisingd). At angles between 15� andDn2

30�, the maximum efficiencies of curves with values ofPtune

0.3–0.5 closely follow the asterisks showing that Kogelnik’s
theory agrees with the RCWA calculations. This agreement
also applies to higher angles. Around the angles of 35� and

7 The optimization excluded thicknesses significantly beyond the first peak
of thep-polarization curve. With arbitrarily large thicknesses, it is theoretically
possible to obtain 100% diffraction efficiency at any angle (except 45�) with
unpolarized light usings-p–phased gratings (e.g., matching the third peak of
the s-curve with the second peak of thep-curve). We do not consider these
others-p–phased gratings, because increasing the thickness has the disadvan-
tage of reducing the efficiency bandwidth (§ 2.5).
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Fig. 3.—First-order diffraction efficiencies versus Bragg angle with unpo-
larized incident light. The lines represent efficiencies at the Bragg condition
determined using Kogelnik’s theory for seven gratings with values ofPtune

0.1–0.5, 1.4, and 2.5 (fixed intrinsic grating parameters; see eqs. [9] and [10]).
The symbols represent maximum designable efficiencies determined using
RCWA (varying d, L; fixed mm, , ). The as-l p 0.6 Dn p 0.07 n p 1.52 2

terisks represent standard gratings, in which the optimum thickness with
unpolarized light is near the first peak of thes-polarization curve (e.g., upper
plot of Fig. 2, ). The squares and triangles represents-p–phasedP � 0.5tune

gratings in which the thicknesses are near the second peak and third peak,
respectively, of thes-polarization curve (e.g., lower plot of Fig. 2,P ≈tune

; ). The efficiencies from the RCWA calculations drop at low1.4 P ≈ 2.45tune

angles, because Kogelnik’s approximation is no longer accurate below about
20�, with (eq. [7]). Note that the grating period, wavelength,Dn /n ≈ 0.052 2

and Bragg angle are related by eq. (4).

Fig. 4.—Tuning a VPH grating. First-order diffraction efficiencies versus
wavelength are shown for three different incidence angles. The efficiencies
were determined using RCWA with , , unslanted fringes,Dn p 0.07 n p 1.52 2

and unpolarized light. The Bragg angles are shown at the Bragg wavelengths,
which are marked by short vertical lines. Note that the blaze wavelength (the
peak of each efficiency curve) is slightly different from the Bragg wavelength
for the low- and high-incidence angles.

55�, the designs can make use of specials-p–phased gratings
that have values of 1.3–1.5 (Fig. 3,squares). Around thePtune

angles of 39� and 51�, the designs can make use ofs-p–phased
gratings that have values of 2.4–2.5 (triangles). Note thatPtune

at 45�, a maximum efficiency of only 50% can be achieved
because of the loss ofp-polarization (eq. [8]). To utilize higher
Bragg angles, very high air-to-glass incidence angles are re-
quired (160�, with ), or prisms need to be attachedn ≈ 1.252

to the grating.
The lines in Figure 3 represent efficiencies derived by “tun-

ing” various gratings that are optimized for unpolarized light
at a particular angle. At angles between 25� and 32�, it is still
possible to obtain high efficiency (190%), but with only one
linear polarization state. Note that the ability of a VPH grating
to be tuned in blaze wavelength (by changing the grating tilt)
also results in multislit spectrographs using VPH gratings ex-
hibiting a shift of the blaze wavelength for objects that are off-
axis in the spectral direction (Robertson et al. 2000). Figure 4
shows diffraction efficiency versus wavelength for a VPH grat-
ing with 1315 lines mm�1, tuned to three different blaze wave-
lengths. As the grating tilt is changed, the peak efficiency drops

slightly as the blaze wavelength moves away from the maximal
peak.

2.5. Bandwidth of Efficiency versus Wavelength

How does the efficiency decrease away from the Bragg
wavelength? Kogelnik determined an approximate formula for
the full width at half-maximum (FWHM) of the efficiency
bandwidth ( ) in first order, which is given byDleff

Dl Leff ∼ cota . (11)2b
l d

We can see immediately that for a given resolution and wave-
length (Bragg angle and grating periodL fixed), increasinga2b

the thickness decreases the bandwidth. Figure 5 shows effi-
ciency versus wavelength for four different thicknesses. The
efficiencies were determined using RCWA.

To maximize the bandwidth, should be as large as pos-Dn2

sible as long as the gratings can be manufactured sufficiently
thin (remembering that determines the maximal peak).Dn d2

However, the efficiency decreases significantly if is in-Dn2

creased such thatr becomes much less than 10 (eq. [6]). The
lost power from first-order diffraction is approximately 21/r
(Rallison et al. 2003). Therefore, to maximize the average ef-
ficiency across a desired wavelength range, there may be a
trade-off between maximizing the bandwidth and maximizing
the peak efficiency. For Bragg angles greater than 20�, this is
generally not an issue, because the upper limit on is setDn2

by the manufacturing process. Values of of up to 0.10–Dn2

0.15 can be achieved using DCG (Dickson et al. 1994).
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Fig. 5.—Variation of the diffraction efficiency versus wavelength for four
different grating thicknesses. The efficiencies were determined using RCWA.
All the gratings have 1710 lines mm�1 unslanted fringes with light incident
at (the first-order Bragg angle for mm and mm).a p 20� l p 0.6 L p 0.5852b

Here is 0.02, 0.04, 0.07, and 0.10 for each grating, from the thickest toDn2

the thinnest, respectively.

Fig. 6.—Theoretical transmission efficiency at an air-glass boundary.
The solid line represents unpolarized light, while the dashed and dotted
lines represent thes- andp-polarization states, respectively. The advantage
of p-polarization for high-resolution spectrographs is apparent. The for-
mulae and derivations for these curves can be found in optics textbooks
(e.g., Hecht 1974).

2.6. Other Issues

So far we have dealt mainly with theoretical results either
from Kogelnik’s equations or from RCWA numerical calcu-
lations. A number of other points that could also affect effi-
ciency are described briefly below.

1. Transmission losses.—The main losses will generally be
from the air-glass boundaries. Figure 6 shows transmission ef-
ficiency versus incidence angle at a boundary. With ,n p 10

, and no AR coatings, the combined losses will ben � 1.51

about 8%–10% for incidence angles ( ) from witha 0�–45�0

unpolarized light. These can be reduced with AR coatings ap-
plied to both surfaces. For wavelengths between 0.4 and 2mm,
the transmittance of a thin layer (5mm) of DCG is very high,
and losses are insignificant (Barden et al. 1998). Between 0.3
and 0.4mm, losses could be a few percent.

2. The refractive index of the DCG layer.—The average
index ( ) and the semiamplitude of the modulations ( ) willn Dn2 2

not be exactly constant. A small variation with wavelength is
not expected to have a significant impact on the performance
of a VPH grating. Of possible importance is a variation of the
index modulation as function of depth or position across the
surface. In the first case, a reduction with depth means that the
effective thickness is less than the thickness of the DCG layer,
and in the second case the diffraction efficiency will vary with
position unless there is a high degree of uniformity in the laser
beams that produce the modulation (Rallison et al. 2003). An
additional issue concerning the difference between nonsinu-
soidal and sinusoidal refractive-index modulations is discussed
by Barden et al. (2000a). This can improve diffraction effi-
ciency in second and higher orders.

3. Defects and errors in manufacturing.—Defects could in-

clude deviations from parallelism between fringes and other
nonuniformities across the grating. Errors are deviations of
VPH specifications from those requested. This may not be im-
portant, since the grating can be tuned to the required wave-
length even if the maximal peak did not meet specifications
(e.g., Glazebrook 1998).

See Barden et al. (2000a) for the performance evaluation of
three VPH gratings for astronomical spectrographs.

3. EXAMPLE CASES AND DISCUSSION

3.1. s-p–phased Gratings

In most spectrographs, the polarization states are not sepa-
rated, and therefore the efficiency with unpolarized light is
important. For low-resolution spectrographs ( ), thea � 20�2b

theoretical diffraction efficiency can be above 95% with stan-
dard VPH gratings. At higher resolution, the efficiency of stan-
dard gratings can be significantly lower. Instead,s-p–phased
gratings can be used to obtain higher efficiency at specific
angles (§§ 2.3–2.4).

The first s-p–phased (Dickson) grating for astronomy was
manufactured by Ralcon8 for the 6dF multiobject spectrograph
at the UK Schmidt Telescope (Saunders et al. 2001). It was
specially designed to observe the calcium triplet around 0.85mm
with a resolving power of about 8000 (first order, 1700 lines
mm�1). The central wavelength is diffracted with a total beam
deviation in air of 94�, which makes use of the 35� special
Bragg angle. The theoretical diffraction efficiency is above 95%
in the range 0.835–0.865mm, and the performance is near to

8 Ralcon Development Lab, P.O. Box 142, Paradise, Utah 84328 (http://
www.xmission.com/∼ralcon), founded by R. D. Rallison.
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Fig. 7.—The 6dF bench-mounted spectrograph with the 1700 lines mm�1 s-p–phased grating in place. There is a 90�–100� beam deviation between the last
element of the collimator (left) and the camera (right). (Photograph taken by Bob Dean and Will Saunders.)

that. In addition, the camera and collimator are close to the
grating. Figure 7 shows the 6dF spectrograph in this config-
uration. This has significantly improved the PSF at the detector
in comparison with using reflection gratings that have similar
resolving powers (W. Saunders 2003, private communication).

If we wish to go to a higher spectral resolution but are limited
to a certain maximum deviation between collimator and camera
beams, then prisms can be attached (Figs. 8–9, Appendix). For
example, a grating with 2400 lines mm�1 and 20� prisms
( , , ) that operates atn p 1.25 Dn d p 0.73 n p 1.5 l p2 2 1

mm with a 111� total beam deviation in air ( ,0.85 a p 35�.50

) can make use of the 55� special Bragg angle fora p 43�1

high efficiency ( ). This type of grating is challengingP p 1.4tune

to produce because of the difficulty in testing the efficiency
prior to attaching prisms (consider total internal reflection), but
if high resolution and high efficiency are important over a

narrow wavelength range, then it could be useful. Testing is
needed to determine the laser exposure levels for the DCG.
One solution would be to design the grating to work at the 35�
Bragg angle, which has the same value. This would requirePtune

testing at a wavelength 0.708 [ ] timesp sin (35.3)/ sin (54.7)
the design wavelength, subject to variations in and withn Dn2 2

wavelength (eqs. [4] and [10]). Note that in order for such
gratings to reduce systematic noise in the detected signal, it
may be necessary to use a filter to block scattered light from
outside the desired wavelength range.

3.2. Separating Polarization States in a Spectrograph

If we could envisage an ideal spectrograph, what properties
would it have? The primary problems are scattered light at
refractive index boundaries, and the difficulties of dispersing
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Fig. 8.—Resolving powers of VPH transmission gratings versus total beam
deviation. The top line represents a grating immersed between two 40� prisms
(with ), and the dashed line between two 20� prisms and the lowern p 1.51

line represents a grating with no prisms attached. The crosses are set at 10�

intervals in Bragg angle (with ). The resolving powers are normalizedn p 1.32

to unity for the zero-deviation 40� prism model. See Fig. 9 for the prism model,
and the Appendix for the calculation of resolving power. Note that the dis-
persion caused by differential refraction is not included.

Fig. 9.—Diagram of a prism model for an immersed transmission grating. The dependence of the spectral resolving power on the angles and indices is given
in the Appendix. In Littrow configuration, with both prism angles equal tog, the resolving power is approximately proportional to .n tana cos (a � g)/ cosa1 1 1 0

s- andp-polarization states without compromise of one or the
other. We note that both of these problems arise from the ge-
ometry of the wavefront with respect to the optical element/
grating.

A substantial increase in efficiency, perhaps approaching the
ideal, could be achieved by allowing the two polarization states
to be handled separately in a spectrograph. One approach would
be to separate the two polarizations at a polarizing beam splitter
(Goodrich 1991). They would then propagate along separate
paths where all the optics would be oriented to minimize light
loss for that polarization. In particular, a VPH grating can be
optimized for almost any angle to obtain near 100% efficiency
at blaze wavelength in one polarization. An alternative to the
use of a beam splitter would be to use a VPH grating itself.
The collimated beam would encounter a VPH grating in the
normal way, with diffracted light going to a camera. But the
grating would be designed so that first-order diffraction would
be optimized for a single linear polarization, while zeroth order
would be optimized for the other polarization.9 The undiffracted
transmitted beam could then go on to a second VPH grating
optimized for the other polarization, feeding into a second cam-

9 At certain Bragg angles, it is theoretically possible to achieve 100% dif-
fraction efficiency in one linear polarization (s or p) with 0% diffraction ef-
ficiency in the other (Dickson et al. 1994; Huang 1994). This is analogous to
the special angles fors-p–phased gratings.
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era. Whatever method is used to separate the polarizations, note
that it is not necessary to achieve complete separation, and
hence the requirement for the polarizing element is less de-
manding than for a polarimeter. This is because the only effect
of mixing in a small amount of light with the “wrong” polar-
ization is that it will be less efficiently processed downstream.
But it will still make some positive contribution to the signal,
and the decrease in efficiency will be a second-order effect.

The cases in which separate polarizations would most im-
prove in efficiency is with high spectral resolution. Large beam
deviations and large air-to-glass incidence angles are needed
to obtain the highest resolutions (Fig. 8). At these large angles,
the boundary-transmission efficiency ofs-polarization is low,
but the efficiency inp-polarization remains high (Fig. 6). For
example, one could design a grating that operates with light
incident near Brewster’s angle on the air-glass boundary and
with the DCG layer optimized forp-polarization efficiency.
This would provide a high-resolution grating with near 100%
efficiency in one linear polarization. Naturally, polarimetry
measurements could also take advantage of these one-polari-
zation optimized gratings. Note also that separating polarization
states could be used to optimize efficiency for reflection grating
spectrographs (Lee & Allington-Smith 2000) and for back-
ground-limited observations during bright Moon phases
(Baldry & Bland-Hawthorn 2001).

We are moving toward precision measurements in many ar-
eas of astrophysics. The major limitation continues to be sys-
tematic sources of noise. In order to combat this, many ex-
periments are cast as differential measurements, e.g., alternating
observations of source and background in order to beat down
the systematic errors. This is a highly effective strategy for
dealing with external noise sources and some internal sources
(e.g., apparatus instability). However, there are internal sources
of noise that continue to haunt most spectrographs today, in
particular, scattered light. This “ghost light” is not usually sup-
pressed in differential experiments, because it depends on the
distribution of light sources over the field of view. Even with
mitigation strategies based on light baffles and optimized AR
coatings, there is always residual stray light, not least from the
optical/IR detector because of its large refractive index com-
pared to a vacuum. But this situation is slowly improving as
detectors and matched coatings approach their theoretical
maximum.

The only way to guard against stray light is to consider the
role of every element in the optical train very carefully and to
orient the optical elements accordingly, particularly the choice
of AR coating and orientation of the interface to the incoming
wavefront. This is easier to do if the wavefront has been divided
into its s- and p-states, and each polarization is considered
separately. One only has to consider the AR coatings in each
of two arms (one fors-states and the other forp-states), which
can be optimized for throughput. This is not true for a skew

ray in natural light, which would require a birefringent coating
in order to optimize throughput in both polarization states.

4. SUMMARY

VPH gratings are used in an increasing number of spectro-
graphs because of their high diffraction efficiency. In this paper,
we have outlined the basic physics necessary to design VPH
gratings. In particular, we have defined a parameter ( ) thatPtune

determines how the efficiency of a grating varies with Bragg
angle, we have described the possibility of creatings-p–phased
gratings that can have 100% efficiency with unpolarized light
at specific angles, and we have discussed the importance of
considering the separate polarization states. The main points
concerning tuning and efficiency are given below.

1. The grating period (L) and the average refractive index
of the DCG layer ( ) determine the wavelength as a functionn2

of Bragg angle (eq. [4], with ).m p 1
2. The parameter of a grating (eq. [10]) determines howPtune

the efficiency varies with Bragg angle (eq. [9]). Standard grat-
ing designs have (Fig. 3).P � 0.5tune

3. s-p–phased gratings can be created by aligning the peaks
of the s- andp-efficiency curves versus DCG thickness at par-
ticular Bragg angles (Fig. 2). For example, a grating with

has high efficiency with unpolarized light at a BraggP ≈ 1.4tune

angle of 35�. Here the second peak of thes-curve is aligned
with the first peak of thep-curve.

4. Bragg-condition diffraction efficiencies are lower than
predicted by equation (8) or (9) if Kogelnik’s condition is
not satisfied (eq. [6] or [7]). However, the efficiency can still
be above 90% as long as (the lost power is approxi-r � 3
mately ).21/r

5. The FWHM of the efficiency curve is approximately in-
versely proportional to the thickness of the grating (eq. [11],
Fig. 5). Therefore, it is generally optimal to have the thinnest
possible DCG layer, subject to manufacturing limitations and
lost power from first-order diffraction.

We have shown how VPH gratings can be manufactured and
exploited to ensure higher transmission and better suppression
of stray light. This will necessarily force instrument designers
into a smaller parameter space, but we feel that there is suf-
ficient freedom within that space to account for most design
issues. In any event, we deem these considerations to be par-
amount if systematic sources of noise are ever to be effectively
removed from the apparatus.

We would like to thank Sam Barden, Chris Clemens, Richard
Rallison, Will Saunders, and Keith Taylor for information and
helpful discussions; and we thank the referee for comments,
which have improved the paper. Some of this research was
funded by a design study for OSIRIS at the Gran Telescopio
Canarias.
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APPENDIX A

RESOLVING POWERS OF IMMERSED TRANSMISSION GRATINGS

VPH gratings can be sandwiched between glass prisms. This reduces the total beam deviation and reduces the air-to-glass incidence
angle ( ), for a given grating and wavelength. This can be useful because the total beam deviation is limited by the physical sizesa0

of the camera and collimator, and because higher incidence angles on air-glass boundaries give higher reflection losses (for unpolarized
light). Here we give the equations for calculating the resolving power of a transmission grating immersed between two prisms.

Figure 9 shows the prism model that we are using with the appropriate angles defined. Light passing through the prism and the
immersed grating, with a total beam deviation of , obeys the following equations:a � b � g � g0 0 a b

n sin (a � g ) p n sina , (A1)1 1 a 0 0

ml
sinb p � sina , (A2)1 1

L ng 1

n sinb p n sin (b � g ). (A3)0 0 1 1 b

The resolution can be determined by solving

b (a ,l � Dl) p b (a � Da,l). (A4)0 0 0 0

Here the output angle is regarded as a function of the input angle and the wavelength. This expression represents the condition
that incrementing the wavelength by shifts the output image by the same amount as does the change in the incidence angleDl

across the slit width. The angular size of the slit in the collimated beam, , is given byDa

ftel
Da p v , (A5)s fcoll

where is the angular size of the slit on the sky, and and are the effective focal lengths of the telescope and collimator,v f fs tel coll

respectively. If and are independent of wavelength (i.e., ignoring differential refraction), then equation (A4) can be solvedn n1 0

analytically to give a resolving power of

l f n cos (a � g ) sinbcoll 1 1 a 1p tana � . (A6)1( )Dl v f n cos (a ) cosas tel 0 0 1

Note that with , this reduces to the well-known equation for the resolution of an unimmersed grating:g p g p 0a b

l f sinbcoll 0p tana � . (A7)0( )Dl v f cosas tel 0

To include the dispersive effects of glass ( varying withl), equation (A4) can be solved numerically. Differential refractionn1

marginally increases the resolving power for typical VPH grism designs.
In Littrow configuration, and , with a total beam deviation of , the resolving power ( andg p g (p g) a p b 2a � 2g na b i i 0 0

constant) is given byn1

l f n cos (a � g)coll 1 1p 2 tana . (A8)1
Dl v f n cos (a )s tel 0 0

The usefulness of the Littrow configuration is threefold: (1) VPH unslanted fringes can be used (slanted fringes may curve during
DCG processing); (2) the beam size remains about the same, which keeps the camera optics smaller and simpler; and (3) the
angular size of the slit remains nearly the same. With unslanted fringes, the important Bragg angle is given byn sina p2 2b

. Figure 8 shows resolving powers at Littrow versus total beam deviation with the Bragg angle annotated. Note that forn sina1 1

a given grating (fixed diffraction order, wavelength, and lines mm�1), prisms typicallyreduce resolving power, but for a given
total beam deviation, prisms typicallyincrease resolving power (Wynne 1991; Lee & Allington-Smith 2000).
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